ORGANIC COMPOUNDS

Acta Cryst. (1996). C52, 2207-2212

Dibutyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate, Diisobutyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate and Di*tert*-butyl 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

KRISTIN R. ROWAN AND ELIZABETH M. HOLT*

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA. E-mail: chememh@osucc. bitnet

(Received 2 January 1996; accepted 11 March 1996)

Abstract

The structures of dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, $C_{23}H_{30}N_2O_6$, diisobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, $C_{23}H_{30}N_2O_6$, and di-*tert*butyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, $C_{23}H_{30}N_2O_6$, members of the 1,4-dihydropyridine class of calcium antagonists, have been determined. Increasing the bulk of the esterification groups, as quantified in a cone-angle analysis, leads to greater perpendicularity of the dual ring system. This leads to conclusions about the potential activity of these compounds.

Comment

Nifedipine [2,6-dimethyl-3,5-dicarbomethoxy-4-(2-nitrophenyl)-1,4-dihydropyridine] is a calcium antagonist drug of the 1,4-dihydropyridine (DHP) type (Fig. 1). Compounds of this class are currently being used in the treatment of cardiovascular disorders such as angina and hypertension (Triggle, Langs & Janis, 1989; Hurwitz, Partridge & Leach, 1991).

Calcium antagonistic activity of members of the 1,4dihydropyridine family is influenced by (a) the presence of the 1,4-dihydropyridine moiety, (b) alkyl groups (preferably methyl) substituted at the 2 and 6 positions, (c) ester groups at the 3 and 5 positions, (d) a phenyl substituent at position 4 and (e) an H atom on N1 (Triggle, Langs & Janis, 1989; Morad, Goldmann & Trentham, 1983; Loev, Goodman, Snader, Tedeschi & Macko, 1974; Janis, Silver & Triggle, 1987; Fig. 1).

The influence of the size of the esterification groups is not fully understood. Variation of the C3 and C5 ester alkyl groups has led to conflicting results. In an early investigation of various DHP derivatives, it was observed that an increase in the bulk of the ester side chain led to an increase in activity (Loev, Goodman, Snader, Tedeschi & Macko, 1974; Bolger, Gengo, Klockowski, Luchowski, Siegel, Janis, Triggle & Triggle, 1983). However, in a series of meta-nitro derivatives, activity appeared to decrease with an increase in the bulk of the ester alkyl groups (Rodenkirchen, Bayer, Steiner, Bossert, Meyer & Moeller, 1979; Suzuki, Shiratori, Murayama, Harada, Miyano & Takeya, 1989). Furthermore, another investigation revealed that for ortho-substituted phenyl derivatives, activity decreased as ester bulk increased and for meta-substituted phenyl derivatives, activity increased as bulk increased whereas for paraphenyl derivatives, activity was always observed to be low no matter what ester groups were present (Bossert, Horstmann, Meyer & Vater, 1979). The effect of the size of the ester side chain on the rest of the conformation is poorly understood.

All of the nifedipine derivatives examined by singlecrystal X-ray diffraction (Triggle, Langs & Janis, 1989; Mehdi & Ravikumar, 1992) exhibit a flattened-boat conformation of the 1,4-dihydropyridine ring with the N atom at the prow and the phenyl ring in pseudoaxial position at the bow. Structure-activity studies have demonstrated that flattening of the boat conformation correlates with increased activity, presumably due to the concurrent change in position of the phenyl ring.

In the majority of the more than 30 crystal structures of members of the nifedipine family, the ester groups are found to be nearly coplanar with the nearest double bond in the DHP ring, with the carbonyl group oriented either *cis* (*sp*, synperiplanar) or *trans* (*ap*, antiperiplanar) to that bond (Fig. 1) (Triggle, Langs & Janis, 1989). In nifedipine itself, the carbonyls of the ester groups are *ap* and *sp* and thus point in opposite directions. It is thought that only the *sp* conformation of the ester group permits hydrogen bonding to the carbonyl O atom as

Fig. 1. 1,4-Dihydropyridine skeleton with the crystallographic numbering scheme illustrating *sp* and *ap* orientations of ester groups.

an acceptor atom when the drug binds to its receptor site (Triggle, Schefter & Triggle, 1980; Langs, Strong & Triggle, 1990).

It appears that *o*-phenyl substituted derivatives have a preference for *sp*,*sp* geometry, whereas the non-*o*substituted derivatives prefer *sp*,*ap* geometry. This is consistent with the thesis that the DHP binding site is non-symmetrical on the receptor, and the probability of the ester groups being *ap*,*sp* oriented when binding is high.

In order to observe the conformational effects of an extended ester side chain and increased bulk of the ester groups, the crystal structures of dibutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate, (I), diisobutyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, (II), and di-*tert*-butyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, (III), were performed.

Compound (I) exhibits the same orientation of the ester groups as nifedipine (C3 ap, C5 sp). Compound (II) shows both esters in the sp conformation, similar to that of nimodipine (Langs, Strong & Triggle, 1990). Compound (III) shows the opposite orientation to that of nifedipine. The C3 ester is sp, whereas the C5 ester is ap.

When the plane of the phenyl ring is perpendicular to the plane of the base of the boat, activity increases (Loev, Goodman, Snader, Tedeschi & Macko, 1974; Triggle, Schefter & Triggle, 1980). The torsion angle that defines this parameter is C3—C4—C7—C12. The deviation from perfect bisection of the phenyl ring with respect to the DHP ring can be expressed as the difference between the torsion angle C3—C4—C7— C12 and the ideal value of 60°. Compound (II) exhibits the least deviation from the ideal value [8.8 (4)°]. Compounds (I) and (III) exhibit deviations of 14.8 (6) and 21.4 (5)°, respectively. The position of the ester alkyl groups in compound (II) may cause the phenyl ring to become more perpendicular (Fig. 2).

Fig. 2. Projection views of (I), (II) and (III). Displacement ellipsoids are plotted at the 50% probability level.

The sum, Σ , of the absolute values of the internal torsion angles of the DHP ring is a measure of its planarity (Table 7). Published structure-activity ratios indicate that increased planarity of this ring (Σ close to zero) correlate with higher activity of the compound. Larger Σ values are observed, in general, for parent compounds with the nitro group in the meta position. This is an indication of the decreased planarity of the DHP ring and hence the lower activity of compounds with a *meta* substituent. Compound (I) exhibits a Σ of $103.4(6)^{\circ}$, compound (II) $100.7(5)^{\circ}$ and compound (III) 73.7 (6)°. Hence, the tert-butyl alkyl group causes the least deviation from planarity of the DHP ring.

A parameter that can be used to describe the space occupied by an ester alkyl group is the cone angle (Tolman, 1977). This is the angle that is swept out by the van der Waals radii of the groups attached to the carboxy O atom, assuming free rotation about the C3-C3' or C5-C5' bonds. The compound with the largest cone angle, (II), shows an sp, sp conformation of the ester carbonyl groups. In the sp conformation, the alkyl esterification group is extended towards and parallel to the phenyl ring. The smaller cone angle of (III) appears to correlate with greater flattening of the 1,4-DHP ring (Table 7).

Therefore, compound (III) should have higher activity, based on its Σ value. Compound (II) should exhibit high activity because of the orientation of its ester groups and the almost perfect bisection of the phenyl ring with respect to the DHP ring.

Experimental

All three title compounds were prepared by known synthetic methods (Hantzsch, 1882) and recrystallized from ethanol/water solution. Slow evaporation of an ethanol solution yielded yellow plate-like crystals in each case.

Compound (I)

Crystal data

$C_{23}H_{30}N_2O_6$
$M_r = 430.5$
Monoclinic
$P2_{1}/c$
a = 11.358(4) Å
b = 16.352(6) Å
<i>c</i> = 12.999 (5) Å
$\beta = 101.56(1)^{\circ}$
$V = 2364.9 (15) \text{ Å}^3$
Z = 4
$D_{\rm x} = 1.209 {\rm Mg m}^{-3}$
D_m not measured

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 47 reflections $\theta = 4.033 - 12.674^{\circ}$ $\mu = 0.088 \text{ mm}^{-1}$ T = 298 KChunk $0.3 \times 0.2 \times 0.2$ mm Yellow

5197	measured reflections
4160	independent reflections
1458	observed reflections

$ F\rangle$	4.5σ	(F)	J
-------------	-------------	-----	---

Refinement

03 C4 C5 C5

Refinement on F	Extinction
R = 0.0560	SHELXS
wR = 0.0612	1990)
S = 1.13	Extinction
4160 reflections	0.0019 (4
289 parameters	Atomic sca
H-atom parameters not	from Inte
refined	for Crys
$w = 1/[\sigma^2(F_o) + 0.0008F^2]$	Vol. C, 7
$(\Delta/\sigma)_{\rm max} = 0.035$	6.1.1.4)
$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$	

reflections intensity decay: 1.0% correction: 86 (Sheldrick,

3 standard reflections

monitored every 97

coefficient: 4) attering factors ernational Tables tallography (1992, Tables 4.2.6.8 and

Table 1. I	Fractional	atomic	coordinat	tes and	l equiva	lent
isotr	opic displa	acement	parameter	rs (Ų)	for (I)	

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
N1	0.8738 (4)	0.1670(3)	0.3466 (3)	0.059 (2)
N2	1.0175 (5)	0.0910(4)	-0.1728 (4)	0.072 (2)
01	0.9788 (4)	0.0460 (3)	-0.2493 (4)	0.108 (2)
02	1.1108 (5)	0.1320(3)	-0.1632 (3)	0.091 (2)
C2	0.8040 (4)	0.2257 (4)	0.2851 (4)	0.051 (2)
C2′	0.6925 (4)	0.2491 (3)	0.3277 (4)	0.066 (2)
C3	0.8420 (4)	0.2573 (3)	0.2001 (4)	0.046 (2)
C3′	0.7863 (4)	0.3253 (3)	0.1353 (4)	0.052 (2)
03'	0.8149 (3)	0.3487 (2)	0.0536(3)	0.072 (2)
03''	0.6984 (3)	0.3675 (2)	0.1724 (3)	0.068 (2)
C4	0.9526 (4)	0.2196 (3)	0.1650 (4)	0.050(2)
C5	1.0376 (4)	0.1813 (3)	0.2584 (4)	0.050(2)
C5′	1.1678 (6)	0.1713 (4)	0.2552 (5)	0.066 (3)
05'	1.2451 (4)	0.1392 (3)	0.3204 (4)	0.103 (2)
05''	1.1933 (3)	0.2067 (3)	0.1678 (3)	0.081 (2)
C6	0.9943 (5)	0.1510(3)	0.3422 (4)	0.054 (2)
C6′	1.0610 (5)	0.1039 (4)	0.4347 (4)	0.074 (3)
C7	0.9177 (4)	0.1577 (3)	0.0747 (3)	0.047 (2)
C8	0.9775 (4)	0.1547 (3)	-0.0105 (4)	0.055 (2)
C9	0.9469 (5)	0.0949 (4)	-0.0870 (4)	0.058 (2)
C10	0.8570 (5)	0.0368 (4)	-0.0860 (4)	0.067 (3)
C11	0.7992 (5)	0.0403 (4)	-0.0008 (5)	0.076 (3)
C12	0.8293 (5)	0.0991 (4)	0.0781 (4)	0.059 (2)
C13	0.6497 (5)	0.4405 (4)	0.1144 (5)	0.081 (3)
C14	0.5579 (6)	0.4803 (5)	0.1673 (6)	0.103 (3)
C15	0.4467 (7)	0.4379 (5)	0.1638 (7)	0.126 (4)
C16	0.3473 (7)	0.4826 (5)	0.2065 (8)	0.158 (5)
C17	1.3171 (5)	0.2006 (5)	0.1532 (6)	0.111 (4)
C18†	1.3232 (9)	0.227(1)	0.042 (9)	0.096 (5)
C18A†	1.341 (2)	0.175 (3)	0.078 (3)	0.096 (5)
C19†	1.445 (1)	0.218(1)	0.013(1)	0.102 (6)
C19A†	1.462 (3)	0.169 (3)	0.061 (3)	0.102 (6)
C20	1.4820 (9)	0.1439 (8)	-0.0166 (10)	0.237 (9)

 \dagger Site occupancy = 0.5.

Table 2. Selected geometric parameters (Å, °) for (I)

Data collection		N1—C2	1.391 (7)	CS-C6 C5' O5'	1.375 (8)
Siemens P4 four-circle	$R_{\rm int} = 0.0568$	N1C6 N2O1	1.406 (7)	C5'_05''	1.357 (8)
diffractometer	$\theta_{\rm max} = 25.0^{\circ}$	N2—O2	1.238 (8)	O5''-C17	1.459 (7)
$\theta/2\theta$ scans	$h = -13 \rightarrow 13$	N2—C9	1.499 (8)	C6—C6'	1.499 (7)
Absorption correction:	$k = 0 \rightarrow 19$	$C_2 = C_2$ $C_2 = C_3$	1.328 (8)	C13-C14 C14-C15	1.43 (1)
none	$l = 0 \rightarrow 15$	C3—C3′	1.461 (7)	C15—C16	1.53 (1)

THREE ISOMERS OF C23H30N2O6

C3—C4	1.548 (7)	C17—C18	1.52 (11)	291 pa	rameters		Extinction coeffi	cient:
C3' - 03'	1.232 (7)	C17—C18A	1.14 (4)	H-aton	n parameters	not	0.0185 (82)	
03''-03	1.378(7)	C18-C19 C19-C20	1.52(2)	refin	ed		Atomic scatterin	g factors
C4-C5	1.400 (7)	C19 - C20 C20 - C194	1.57(2)	w = 1/	$[\sigma^2(F_0^2) + (0,$	$(1127P)^2$	from Internati	onal Tables
C4—C7	1.540 (7)	C18A—C19A	1.43 (4)	+	0.3691 <i>P</i> 1	,	for Crystallog	ranhy (1007)
C5—C5′	1.496 (8)			whe	re $P = (F_{1}^{2} +$	$-2F_{2}^{2}$)/3	Vol C Tables	4268 and
C2-N1-C6	123.5 (5)	C5-C5'-O5'	127.6 (6)	(Λ/σ)	= -0.057	21 ()15	6114	4.2.0.8 and
01—N2—O2	123.9 (6)	C5-C5'-O5''	110.8 (5)	(4/0)	$\max = 0.057$		0.1.1.4)	
01—N2—C9	117.7 (6)	05'—C5'—O5''	121.6 (6)	Table	3 Fraction	al atomic	coordinates and	l equivalent
02	118.4 (5)	C5'05''C17	116.9 (5)	:	anternia dia		(\hat{a}^2)	c (II)
N1 - C2 - C2'	112.5 (4)	NI-C6-C5	118.1 (4)	L.	souropic aisp	nacement	parameters (A ⁻)	fo r (11)
$n = c_2 = c_3$	119.3 (5)	NI-0-0	113.8 (5)		I.	$a = (1/3)\Sigma_{i}$	Σ.II.:.a*a*a: a	
C2_C3_C3'	125.7 (5)	C3-C0-C0 C4-C7-C8	128.1(3) 122.0(4)		08	q = (1/5)21	$\Delta_j O_{ij} u_i^{\dagger} u_j^{\dagger} \mathbf{a}_i \cdot \mathbf{a}_j$.	
C2C3C4	119.6 (4)	C4C7C12	120.3 (5)		x	У	z	U_{eq}
C3′—C3—C4	114.6 (4)	N2-C9-C8	117.9 (5)	N1	0.1571 (4)	1.3679	(3) 0.7555 (3)	0.0552 (10)
C3—C3′—O3′	125.1 (5)	N2_C9_C10	118.6 (5)	C2 C2	0.0591 (4)	1.3042	$\begin{array}{c} (4) & 0.6512(3) \\ (4) & 0.6512(4) \end{array}$	0.0485 (11)
C3—C3'—O3''	116.1 (5)	O3''-C13-C14	110.1 (5)	C2	0.0753(5)	1.4042	$\begin{array}{ccc} (4) & 0.5777(4) \\ (4) & 0.6240(2) \\ \end{array}$	0.0715 (14)
03' - C3' - 03''	118.8 (5)	C13-C14-C15	117.5 (7)	C3'	-0.0388(4) -0.1340(5)	1.1038	(4) 0.0240 (3) (5) 0.5124 (4)	0.0438 (10)
$C_{3} = 0_{3} = 0_{13}$	117.0(4)	C14 - C15 - C16	117.6 (7)	C3''	-0.3525(6)	0.8808	(5) 0.5124(4) (5) 0.4012(4)	0.0538(12)
$C_{3} - C_{4} - C_{5}$	110.5 (4)	05'' - C17 - C18	109.4 (6)	03'	-0.1169(4)	1,1333	$\begin{array}{c} (3) & 0.4012(4) \\ (4) & 0.4300(3) \end{array}$	0.085(2)
$C_{3} - C_{4} - C_{7}$	112.7 (4)	$C_{17} = C_{17} = C_{18}$	122.4 (17)	03"	-0.2489 (3)	0.9624	(3) 0.5082(2)	0.0615 (9)
$C_{4} - C_{5} - C_{5}'$	119.6 (5)	C17 - C184 - C194	124 (3)	C4	-0.0529 (4)	1.0797	(4) 0.7123 (3)	0.0421 (10)
C4-C5-C6	120.5 (5)	C18-C19-C20	124(3) 120(1)	C5	0.0995 (4)	1.1536	(4) 0.8032 (3)	0.0427 (10)
$C_{5}^{\prime} - C_{5}^{\prime} - C_{6}^{\prime}$	1197(5)	C184 - C194 - C20	120 (1)	C5′	0.1406 (5)	1.0687	(4) 0.8656 (3)	0.0512(11)
	15 2 (7)		121 (3)	C5″	0.0532 (5)	0.8416	(4) 0.9004 (4)	0.0726 (14)
$C_0 = N_1 = C_2 = C_3$	15.2(7)	$C_3 - C_4 - C_5 - C_6$	28.5 (6)	05'	0.2639 (4)	1.1076	(3) 0.9309 (3)	0.0888 (11)
$C_2 = N_1 = C_0 = C_1$	-14.7(7)	$C_{3} = C_{4} = C_{7} = C_{10}$	138.0 (3)	05''	0.0256 (3)	0.9368	(3) 0.8438 (2)	0.0581 (9)
$N_{1} = C_{2} = C_{3} = C_{4}$	80(7)	$C_{3} = C_{4} = C_{7} = C_{12}$	-43.2(0)	C6	0.1930 (4)	1.2933	(4) 0.8231 (3)	0.0497 (11)
C2-C3-C3'-O3'	-173.4 (5)	C4-C5-C6-N1	-9.1(7)	C6 C7	0.3382 (5)	1.3819	$\begin{array}{ccc} (4) & 0.9120(4) \\ (4) & 0.7(12(2)) \end{array}$	0.0770(14)
C2_C3_C4_C5	-27.9 (6)				-0.1937(4)	1.0340	(4) 0.7612(3) (4) 0.7678(3)	0.03/3(10)
				60	-0.2361(4) -0.4266(4)	0.9218	(4) 0.7078(3) (4) 0.8146(3)	0.0401(11)
Compound (II)				C10	-0.4573(5)	1.0072	(5) 0.8554(3)	0.0501(11) 0.0594(12)
Crystal data				C11	-0.3535 (5)	1.1411	(4) 0.8491 (3)	0.0596 (12)
Crystat aata				C12	-0.2262 (5)	1.1634	(4) 0.8022 (3)	0.0513(11)
$C_{23}H_{30}N_2O_6$		Mo $K\alpha$ radiation		C13	-0.4830 (6)	0.7517	(5) 0.4119 (4)	0.085 (2)
$M_r = 430.5$		$\lambda = 0.71073 \text{ Å}$		C14	-0.5874 (6)	0.7760	(6) 0.4794 (5)	0.107 (2)
Triclinic		Cell parameters fro	om 41	C15	-0.4303 (9)	0.6617	(8) 0.4486 (7)	0.143 (3)
PI		reflections		C10	-0.07/9(6)	0.6970	(4) 0.8513 (4) (5) 0.0142 (4)	0.0716(14)
a = 0.715(1) Å		$A = A 151 12 A02^{\circ}$,	C18+	-0.0544(7)	0.5901	(3) 0.9142(4) 3) 0.734(4)	0.097(2) 0.105(10)
h = 10.032(1) Å		v = 4.131 - 12.402		C18A†	-0.139 (3)	0.637 (0.729(3)	0.089(7)
v = 10.952(1) A		$\mu = 0.050 \text{ mm}$		N2	-0.5339 (5)	0.7577	(5) 0.8197 (4)	0.0786 (12)
c = 12.501(1) A		I = 298 K		01	-0.6409 (5)	0.7386	(4) 0.8662 (4)	0.120 (2)
$\alpha = 99.29 (1)^{\circ}$		Chunk		O2	-0.5118 (5)	0.6613	(4) 0.7774 (4)	0.116 (2)
$\beta = 97.27 (1)^{\circ}$		$0.3 \times 0.2 \times 0.2$ m	m	† Site o	ccupancy $= 0.5$			
$\gamma = 116.35 (1)^{\circ}$		Yellow		·		•		
V = 1144.2 (2) Å ³				Tabl	e 4. Selected	l geometri	ic parameters (A,	°) for (11)
Z = 2				NI-C2		1.376 (5)	C5'05'	1,213 (4)
$D_{\rm r} = 1.249 {\rm Mg m^{-}}$	-3			N1-C6		1.379 (5)	C5'05''	1.330 (5)
D not measured				C2—C3		1.353 (5)	C5''_O5''	1.446 (5)
				C2—C2		1.507 (5)	C5''-C16	1.483 (6)
Data collection				C3-C3		1.448 (5)	C6C6'	1.485 (6)
		D 0.00/2		$C_{3}^{-}C_{4}^{-}$	2/	1.529(5)	C9	1.457 (5)
Siemens P4 four-ci	ircle	$R_{\rm int} = 0.0267$		C3'_0	, ,,,	1.199(5)		1.405 (8)
diffractometer		$\theta_{\rm max} = 19.98^{\circ}$		C3''-0	3''	1.330(5)	C15C184	1.487(7)
$\theta/2\theta$ scans		$h = -9 \rightarrow 9$		C3″—C	13	1.460 (6)	C16-C18	1.50 (4)
Absorption correcti	ion:	$k = -10 \rightarrow 0$		C4—C7		1.519 (5)	C16-C17	1.531 (6)
none		$l = 0 \rightarrow 12$		C4—C5		1.534 (5)	N201	1.209 (5)
2623 measured refl	ections	3 standard reflection	ns	C5C6		1.344 (5)	N2	1.220 (5)
2025 inclustred ren 2116 independent r	aflections	5 Sundard Tenectio	07	C5—C5'		1.453 (5)		
2110 independent i	enections	monitored every	97	C2N1-	C6	122.5 (3)	05''-C5''-C16	108.5 (3)
1557 Observed rend	ecuons	renections		C3—C2-	N1	119.5 (3)	C5'—O5''—C5''	117.7 (3)
$[r > 4.0\sigma(r)]$		intensity decay:	0.19%	C3C2-	C2'	126.6 (4)	C5-C6-N1	119.3 (3)
Deferment				NI-C2-	C2 - C2'	113.9(3)	C5-C6-C6'	127.2 (4)
лерпетеnt				C2-C3-		121.5 (3)	C8-C7-C0	113.5 (3)
Refinement on F^2		$\Delta \rho_{\rm max} = 0.526 \ {\rm e} \ {\rm \AA}$	-3	C3'-C1	-C4	120.0(3) 118.7(3)	Cl2-C7-C4	120.3 (3)
R(F) = 0.0574		$\Delta \rho_{\rm min} = -0.249 \text{e}$	Å-3	03'—C3	o'_03''	121.0 (4)	C10-C9-N2	118.7 (4)
$wR(F^2) = 0.1505$		Extinction correctiv	· -	03′—C3	3′—C3	126.9 (4)	C8-C9-N2	118.7 (4)
S = 1 112		CUEIVIA2 (CL.	n. Idrick	03″_C	3'—C3	112.2 (3)	CI5-CI3-C3''	111.7 (5)
J = 1.11J		3002)	IUTICK	03″—C	3''-C13	110.6 (4)	C15-C13-C14	112.0 (6)
2030 reflections		1993)		C3′—O3	о" —СЗ''	116.9 (3)	C3''C13C14	113.9 (4)

KRISTIN R. ROWAN AND ELIZABETH M. HOLT

C7—C4—C3	112.2 (3)	C5''-C16-C18A	122.9 (13)	03'	-0.0569 (3)	0.4730	$\begin{array}{ccc} (2) & 0.2389(3) \\ 0.2389(3) & 0.2145(3) \\ 0.2145(3) & 0.2145(3) \\ 0.2$	0.0781 (12)
C7—C4—C5	111.4 (3)	C5''-C16-C18	105.1 (12)	03'' C4	-0.1237(3) -0.0235(4)	0.4454	$\begin{array}{ccc} (2) & 0.0645 (3) \\ (3) & 0.0902 (3) \end{array}$	0.0519 (9)
C3_C4_C3 C6_C5_C5'	1213(3)	C_{184} $-C_{16}$ $-C_{17}$	109.1(4) 1140(15)	C5	-0.0235(4) 0.0825(4)	0.2369	(3) 0.0938(3)	0.0403 (12)
C6C5C4	120.4 (3)	C18-C16-C17	109.3 (16)	C5'	0.0597 (5)	0.1938	(3) -0.0061(4)	0.0459 (13)
C5'-C5-C4	118.4 (3)	01—N2—02	122.0 (4)	C5″	0.1547 (5)	0.1038	(3) -0.1047 (4)	0.0577 (14)
05'-C5'-O5''	121.0 (4)	O1N2C9	119.4 (5)	05'	-0.0373 (3)	0.2026	(2) -0.0818(3)	0.0635 (11)
O5'-C5'-C5	126.5 (4)	O2—N2—C9	118.6 (4)	05″	0.1557 (3)	0.1459	$\begin{array}{ccc} (2) & -0.0080 (2) \\ (2) & 0.1020 (4) \end{array}$	0.0565 (9)
05''-C5'-C5	112.5 (3)			C6	0.1864 (4)	0.2291	(3) 0.1830(4) (3) 0.2042(4)	0.0459 (13)
C6-N1-C2-C3	18.2 (5)	C2-N1-C6-C5	-19.1 (5)	C0 C7	-0.1419(4)	0.1703	(3) 0.2042 (4) (3) 0.0980 (3)	0.065(2)
NI-C2-C3-C4	6.5 (4)	C3-C4-C7-C8	130.0 (5)	C8	-0.2622(5)	0.2790	(3) 0.0382 (4)	0.0468 (13)
$C2-C3-C3^{-}-O3^{-}$	16.1 (8)	$C_3 - C_4 - C_7 - C_{12}$	51.1 (4)	C9	-0.3679 (5)	0.2456	(3) 0.0524 (4)	0.0532 (14)
$C_2 - C_3 - C_4 - C_5$	-20.4(7)	$N_2 = C_9 = C_{10} = C_{11}$	-179.9(3) -38(6)	C10	-0.3596 (5)	0.1851	(4) 0.1233 (5)	0.070 (2)
$C_{6}-C_{5}-C_{5}'-O_{5}'$	-7.7(5)	C10-C9-N2-01	-4.8(3)	C11	-0.2408 (6)	0.1568	(3) 0.1795 (5)	0.073 (2)
C4-C5-C6-NI	-4.9 (4)		.,	C12	-0.1328(5)	0.1909	$\begin{array}{ccc} (3) & 0.1701(4) \\ (4) & 0.0860(4) \end{array}$	0.0588 (14)
					-0.2019(0) -0.3173(5)	0.5080	(4) = 0.0800(4) (3) 0.0776(5)	0.098(2) 0.080(2)
Compound (III)				C14	-0.1387(5)	0.5911	(3) 0.0685(5)	0.080(2)
Crystal data				C16	0.1405 (6)	0.1618	(4) -0.1936(4)	0.098 (2)
				C17	0.0516(6)	0.0426	(4) -0.1351 (5)	0.102 (2)
$C_{23}H_{30}N_2O_6$		Mo $K\alpha$ radiation		C18	. 0.2851 (5)	0.0652	$(3) -0.0693 \ (5)$	0.086 (2)
$M_r = 430.5$		$\lambda = 0.71073 \text{ A}$		N2	-0.4927 (4)	0.2780	(3) -0.0067 (5)	0.081 (2)
Monoclinic		Cell parameters from	m 40	01	-0.5837 (3)	0.2592	$\begin{array}{ccc} (3) & 0.0187(4) \\ (3) & 0.0770(4) \end{array}$	0.133 (2)
$P2_1/n$		reflections		02	-0.5019 (4)	0.3253	(3) = 0.0779(4)	0.103 (2)
a = 11.142 (1) Å		$\theta = 3.967 - 12.537^{\circ}$		Table	6. Selected	geometric	: parameters (Å.	°) for (III)
b = 16.803 (2) Å		$\mu = 0.088 \text{ mm}^{-1}$		NU 02		1 294 (6)	CA C7	1 522 (6)
c = 13384(1)Å		T = 298 K		NI-C2		1.384 (0)	C4C7 C5C6	1.332 (0)
$\beta = 109.90(1)^{\circ}$		Chunk		$C^2 - C^3$		1.333 (6)	C5—C5′	1.464 (6)
$V = 2356 \pm (4) ^{3}$		$0.3 \times 0.2 \times 0.2$ m	n	C2_C2'		1.508 (6)	C5'-05'	1.213 (5)
V = 2330.1 (4) A		Vellow	••	C3—C3′		1.475 (7)	C5'—O5''	1.345 (5)
L = 4	3	10110W		C3—C4		1.526 (6)	C5''_O5''	1.473 (5)
$D_x = 1.214 \text{ Mg m}$	-			C3' - 03'	, ,,	1.216 (5)	C5''-C17	1.491 (7)
D_m not measured				C3' = 03'	,,,,	1.336 (5)	C5'' - C16	1.505 (7)
Data cellection				$C_{3}^{\prime} = 0_{3}^{\prime}$	2	1.472 (3)	C5 –C18 C6–C6′	1.512(0)
Data collection				C3''-C1	4	1.500(7) 1.507(7)	C9—N2	1.452 (7)
Siemens P4 four-ci	rcle	$R_{\rm int} = 0.1083$		C3''-CI	5	1.511 (7)	N2-01	1.215 (6)
diffractometer		$\theta_{\rm max} = 20.02^{\circ}$		C4—C5		1.516 (6)	N2—O2	1.218 (6)
$\theta/2\theta$ scans		$h = -10 \rightarrow 10$		C2—N1-	C6	123.0 (4)	C5'—C5—C4	113.3 (4)
Absorption correcti	on:	$k = 0 \rightarrow 16$		C3—C2-	-N1	120.0 (4)	O5'_C5'_O5''	123.0 (4)
none		$l = 0 \rightarrow 12$		C3-C2-	C2'	126.3 (5)	05'-C5'-C5	122.1 (5)
2898 measured refl	ections	3 standard reflection	ns	NI-C2-	-C2'	113.0 (4)	05''-05''-05''	114.9 (4)
2207 independent r	eflections	monitored every	97	$C_2 - C_3 $	-C3 -C4	120.8 (4)	05'' - C5'' - C16	110.5 (4)
1383 observed refle	ections	reflections		C3'-C3-	C4	118.1 (4)	C17—C5″—C16	111.5 (5)
$[I > 2\sigma(I)]$		intensity decay:	1.0%	O3'—C3	′—03′′	123.0 (5)	05''—C5''—C18	102.2 (4)
[- > == (-)]				O3'—C3	′—C3	125.2 (5)	C17—C5‴—C18	111.0 (5)
Refinement				03''-C3	3' - C3	111.7 (5)	C16C5''C18	110.9 (5)
\mathbf{D} \mathbf{C} \mathbf{D}^2				03 - 03	3''-C14	102.9 (4)	C5_C6_NI	122.4 (4)
Refinement on F		$(\Delta/\sigma)_{\rm max} = -0.004$	₩ 3	C13-C3	″—C14	110.2 (5)	C5-C6-C6'	128.1 (4)
R(F) = 0.0542		$\Delta \rho_{\rm max} = 0.141 \ {\rm e \ A}$	°_3	03''-C	3″—C15	110.8 (4)	N1-C6-C6'	112.4 (4)
$wR(F^2) = 0.1209$		$\Delta \rho_{\rm min} = -0.197 {\rm e}$	A^{-j}	C13—C3	"—C15	111.0 (5)	C8—C7—C4	119.9 (4)
S = 1.123		Extinction correction	n: none	C14—C3	//C15	112.3 (4)	C12—C7—C4	121.9 (4)
2183 reflections		Atomic scattering f	actors	$C_{3} = 0_{3}$		122.0(4)	$C_{10} - C_{9} - N_{2}$	118.7 (3)
280 parameters		from Internation	al Tables	C5_C4_		112.5(4)	01 - N2 - 02	122.2 (6)
H-atom parameters	not	for Crystallograp	ohy (1992,	C3_C4	C7	109.9 (3)	01—N2—C9	119.0 (6)
refined		Vol. C, Tables 4.	2.6.8 and	C6C5	C5′	125.9 (4)	O2—N2—C9	118.7 (6)
$w = 1/[\sigma^2(F_o^2) + (0$	$(0.0632P)^2$	6.1.1.4)		C6C5-	C4	120.8 (4)		
+ 0.0108P]		,		C6—N1-	C2C3	10.3 (6)	C4-C5-C6-N1	5.2 (5)
where $P = (F_a^2)$	$+ 2F_c^2)/3$			N1-C2-	C3C4	6.8 (6)	C2-N1-C6-C5	-11.2 (5)
Table 5 Frank	al atomi-	acordinates and -	aninalant	C2_C3-	-C3' - O3'	-22.4(2)	C3 - C4 - C7 - C8	93.7 (7)
Table 5. Fraction	ιαι αιοπις	coordinates and e	quivalent	C2C3 C3C4		-20.0(7)	C10-C9-N2-01 C10-C9-N2-02	-1720(7)
isotropic disp	placement p	oarameters (Ų) for	(III)	C6C5	05'05'	178.1 (6)	C3-C4-C7-C12	-81.4 (1)
$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$			Table '	7. Structura	l paramete	ers (°) for compo	unds (I), (II)	

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

and (III)

	isotropic displacement parameters (11) for (11)									
	$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$									
	x	у	z	U_{eq}						
N1	0.2005 (3)	0.2790 (2)	0.2687 (3)	0.0516 (11)						
C2	0.1253 (5)	0.3456 (3)	0.2626 (4)	0.0489 (13)						
C2′	0.1766 (5)	0.4011 (3)	0.3560 (4)	0.064 (2)						
C3	0.0222 (4)	0.3576 (3)	0.1770 (3)	0.0405 (12)						
C3′	-0.0543 (4)	0.4308 (3)	0.1659 (4)	0.0530 (14)						
C3″	-0.2107 (5)	0.5140 (3)	0.0333 (4)	0.0588 (14)						

	Compound	Σ	Deviation	Ester con- formation	Cone angle	
	(1)	103.4 (6)	14.8 (6)	ap, sp	52.7	
	(II)	100.7 (5)	8.8 (4)	sp, sp	56.2	
	(111)	73.7 (6)	21.4 (5)	sp, ap	48.4	

Scan width 0.6° above $K\alpha_1$ and 0.6° below $K\alpha_2$, variable scan rate, background counts on each side of scan, refinement by full-matrix least-squares methods. H-atom positional parameters for compounds (I), (II) and (III) were calculated using ideal geometries and were allowed to ride on their attached atoms, C—H 0.97 and N—H 1.00 Å. Compounds (I), (II) and (III) display disorder of the H atoms attached to C2'. Compounds (I) and (III) also display disorder of the H atoms attached to C6'. Compound (I) has a disordered side chain where C18 and C19 show alternate positions of half occupancy each. Compound (II) displays disorder of C18 with an alternate position of half occupancy.

For all compounds, data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structures: SHELXS86 for (I); SHELXL93 (Sheldrick, 1993) for (II) and (III). For all compounds, molecular graphics: XP (Siemens, 1990)

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1223). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bolger, D. T., Gengo, P., Klockowski, R., Luchowski, E., Siegel, H., Janis, R. A., Triggle, D. J. & Triggle, A. M. (1983). *J. Pharmacol. Exp. Ther.* **225**, 291-301.
- Bossert, V. F., Horstmann, H., Meyer, H. & Vater, W. (1979). Arzneim. Forsch./Drug Res. 29, 226–229.
- Hantzsch, A. (1882). Justus Liebigs Ann. Chem. 215, 1-81.
- Hurwitz, L., Partridge, L. D. & Leach, J. K. (1991). In Calcium Channels: Their Properties, Functions, Regulation, and Clinical Relevance. Boca Raton, Florida: CRC Press.
- Janis, R. A., Silver, P. J. & Triggle, D. J. (1987). Adv. Drug Res. 16, 309-591.
- Langs, D. A., Strong, P. D. & Triggle, D. J. (1990). J. Comput. Aided Mol. Des. 4, 215–230.
- Loev, B., Goodman, M. M., Snader, K. M., Tedeschi, R. & Macko E. (1974). J. Med. Chem. 17, 956–965.
- Mehdi, S. & Ravikumar, K. (1992). Acta Cryst. C48, 1627-1630.
- Morad, M., Goldmann, Y. E. & Trentham, D. R. (1983). Nature (London), 304, 635-638.
- Rodenkirchen, R., Bayer, R., Steiner, R., Bossert, F., Meyer, H. & Moeller, E. (1979). Naunyn-Schmiedeberg's Arch. Pharmakol. 310, 69–78.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1990). XP. Interactive Molecular Graphics Program. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Suzuki, K., Shiratori, K., Murayama, B., Harada, N., Miyano, T. & Takeya, K. (1989). J. Pharmacobiol. Dyn. 12, 293–298.
- Tolman C. A. (1977). Chem. Rev. 77, 313-341.
- Triggle, D. J., Langs, D. A. & Janis, R. A. (1989). Med. Res. Rev. 9, 123-180.
- Triggle, A. M., Schefter, E. & Triggle, D. J. (1980). J. Med. Chem. 23, 1442-1445.

Acta Cryst. (1996). C52, 2212-2215

(*E*)-6-Chloro-3-[2-(4-chlorophenylsulfonyl)ethenyl]-4-chromanone, (*E*)-6-Bromo-3-[2-(4-bromophenylsulfonyl)ethenyl]-4chromanone and (*E*)-3-[2-(4-Chlorophenylsulfonyl)ethenyl]-6-methoxy-4-chromanone

K. V. Narayana Raju,^{*a*} M. Krishnalah,^{*a*} Y.-S. Chen,^{*b*} S. Narasinga Rao^{*b*} and Elizabeth M. Holt^c

^aDepartment of Physics, Sri Venkateswara College of Engineering, SV University, Tirupati, India, ^bDepartment of Physics, University of Central Oklahoma, Edmond, Oklahoma, USA, and ^cDepartment of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA. E-mail: chememh@osucc.bitnet

(Received 9 January 1996; accepted 11 March 1996)

Abstract

The structures of (*E*)-6-chloro-3-[2-(4-chlorophenylsulfonyl)ethenyl]-4-chromanone, $C_{17}H_{10}Cl_2O_4S$, (*E*)-6bromo-3-[2-(4-bromophenylsulfonyl)ethenyl]-4-chromanone, $C_{17}H_{10}Br_2O_4S$, and (*E*)-3-[2-(4-chlorophenylsulfonyl)ethenyl]-6-methoxy-4-chromanone, $C_{18}H_{13}ClO_5S$, display similar bond angles and distances, but differ in the conformations of the ring systems.

Comment

Sulfones display activity as antibacterial and antifungal agents. Dapsone has been proven to be effective against leprosy, and diasone is found to be highly effective against streptococci and pneumococci infections (Kharesch, Stampa & Nudenberg, 1953). The antifungicidal activity of some unsaturated sulfones has been found to be dependent upon substituent and stereochemical effects (Hawthorne, 1960). (E)-3-[2-(Phenylsulfonyl)ethenyl]-4H-1-benzopyran-4-one and (E)-3-[2-(4-chlorophenyl]sulfonyl)ethenyl]-4H-1-benzopyran-4-one have been observed to display antifungal activity against Curvularia lunata and Furasium oxysporum (Mukundam, 1990).

In the interest of exploiting and increasing this activity, we have synthesized a series of compounds which are derived from these active antifungal agents but with substituents at the 6 position of the 4H-1-benzopyran-4-one ring and with variation of the para substituent on the phenyl ring: (E)-6-chloro-3-[2-(4-chlorophenylsulfonyl)ethenyl]-4-chromanone, (I), (E)-6-bromo-3-[2-(4-bromophenylsulfonyl)ethenyl]-4-chromanone, (II), and (E)-3-[2-(4-chlorophenylsulfonyl)ethenyl]-4-chromber yl]-6-methoxy-4-chromanone, (III). Our aim was to observe the influences of these changes upon the